Thursday, January 24, 2013
When is Surface-Deep Knowledge Good Enough?
Here's one way to look at it. Suppose the subject domain (whatever it happens to be) can be represented, conceptually, as a sphere. Everything there is to know about the subject maps to some region inside the sphere. "Total knowledge" represents the total contents (the total volume) of the sphere.
If the sphere is three-dimensional, half the volume is contained in an inner sphere that has 79.37% of the radius of the overall sphere. (Stay with me on this for a moment, even if you're not a math person.) For purposes of discussion, we'll consider a sphere of radius 1.0 (a so-called "unit sphere"). By comparison to a unit sphere, a sphere that has a radius of 0.7937 contains half the volume of the unit sphere. The reason for this is that volume grows as the cube of the radius, and the cube root of 0.5 is 0.7937. So that's what I mean when I say that the innermost 79.37% of a sphere (any 3-dimensional sphere), as measured in terms of its radius, contains 50% of the volume of the sphere. The outermost 20.63% of the radius bounds the outermost 50% of the sphere's volume.
This is summarized in the topmost portion of the accompanying graphic, where we see the cross-section of a sphere with the innermost half of the volume shaded in pink and the outermost half shaded in dark red. The boundary between the two half-volumes starts at a point on the radius that's 79.37% of the way from the center to the surface.
Now suppose we consider a hypersphere of dimensionality 10. That's the middle sphere of the graphic (the one that has "N = 10" next to it). The volume of such a sphere grows as the tenth power of the radius. Therefore the inner and outer half-volumes are delimited at a point on the radius that is 93.3% of the way from the sphere's center (the tenth root of 0.5 is 0.93303). Again, the graphic depicts the outer half-volume in dark red. Notice how much thinner it is than in the top drawing.
If we step up the dimensionality to N = 30, the half-volumes are delimited at the 97.16%-radius point. Half the volume of the hypersphere is contained in just the outer 2.84% of radius.
You can see where I'm going with this. As the dimensionality N approaches infinity, all of a hypersphere's volume is contained in the surface.
So if the dimensionality of a problem is large enough (and you're willing to buy into the simple "volume is knowledge" model set forth earlier), surface-deep knowledge can be quite valuable indeed.
The next time someone tells you your knowledge of something is only "surface-deep," consider the number of dimensions to the problem, then tell the person: "Dude. This is an N-dimensional problem, and since N is high in this case, surface-deep knowledge happens to be plenty. Let me explain why . . ."
Subscribe to:
Post Comments (Atom)
Ha! I love it. Not a math person, but I get the gist of it.
ReplyDeleteAs a math person officially (defending my PhD dissertation in mathematics this semester) ...this is brilliant
ReplyDeleteWhacky thinking. Love it. Shallow is the new deep.
ReplyDelete
ReplyDeleteشركة كيان لنقل العفش بالرياض والمدينة المنورة وجدة ومكة والطائف والدمام تقديم لكم دليل كامل لشركات نقل العفش بالمملكة العربية السعودية
نقل عفش شركة كيان
دليل شركات نقل العفش
شركة نقل عفش بالمدينة المنورة
شركة نقل اثاث بالرياض
شركة نقل عفش بجدة
شركة نقل عفش بمكة
شركة نقل عفش بالطائف
ReplyDeleteشركة نقل عفش بالرياض وجدة والدمام والخبر والجبيل اولقطيف والاحساء والرياض وجدة ومكة المدينة المنورة والخرج والطائف وخميس مشيط وبجدة افضل شركة نقل عفش بجدة نعرضها مجموعة الفا لنقل العفش بمكة والخرج والقصيم والطائف وتبوك وخميس مشيط ونجران وجيزان وبريدة والمدينة المنورة وينبع افضل شركات نقل الاثاث بالجبيل والطائف وخميس مشيط وبريدة وعنيزو وابها ونجران المدينة وينبع تبوك والقصيم الخرج حفر الباطن والظهران
شركة نقل عفش بجدة
شركة نقل عفش بالمدينة المنورة
شركة نقل اثاث بالرياض
شركة نقل عفش بالدمام
شركة نقل عفش بالطائف
شركة نقل عفش بمكة
شركة نقل عفش بينبع
ReplyDeletehttps://www.behance.net/gallery/46472895/_
https://www.behance.net/gallery/46463613/_
https://www.behance.net/gallery/46463247/_
https://www.behance.net/gallery/46451097/_
https://www.behance.net/gallery/46460639/_
https://www.behance.net/gallery/46462575/_
https://www.behance.net/gallery/46450923/_